1 - Amplificateur sélectif à circuit résonant

1 - Etude du bobinage primaire.

1 - 1 - a - Les lignes de champ sont des cercles dont les axes sont confondus avec l'axe Oz. En effet tout plan contenant l'axe Oz est plan de symétrie de la distribution et \(\vec{B} \) est normal à chacun de ces plans.

1 - 1 - b - Prenons le contour fermé suivant :
- un arc de cercle de rayon \(r_0 \) et d'angle \(\alpha \) passant par \(O' \)
- un arc de cercle de rayon \(r_0 + r \cos \theta \) et d'angle \(\alpha \) passant par \(P \)
- on ferme naturellement le contour (la circulation \(y \) est nulle).

Le théorème d'Ampère s'exprime :
\[
\oint_c \vec{B} \cdot d \vec{l} = 0
\]

soit
\[
B_o \cdot \frac{r_0 \alpha}{2\pi} - B_p \oint C r \cos \theta = 0 \text{ ou encore, avec } B_0 = \frac{n_i \mu_0 I}{2\pi r_0}
\]

\[
B_p = \frac{B_0}{1 + \frac{r_0}{r} \cos \theta}
\]

1 - 1 - c - En calculant le flux \(\Phi \) engendré par le tore sur lui-même :

\[
\Phi = n_i \cdot \oint \mu_0 l \cos \theta + \frac{r \cos \theta}{2\pi r_0} + \frac{\cos \theta}{r_0} \text{ drd} \theta \text{ comme } r_0 \gg a \approx r
\]

\[
\Phi = \frac{n_i \mu_0 a^2}{2r_0} + \frac{a^2}{4r_0^2} \text{ on obtient finalement pour } L \text{ après simplification :}
\]

\[
L = \frac{n_i \mu_0 a^2}{2r_0} + \frac{a^2}{4r_0^2}
\]

1 - 1 - d - Comme on a \(L = L_1 + \frac{a^2}{4r_0^2} L \approx L \), avec une précision inférieure à 1% si \(\frac{a^2}{4r_0^2} \ll 0.01 \) soit \(\frac{a}{r_0} \ll 0.2 \).

1 - 1 - e - La résistance de la bobine est donnée par la relation suivante :
R = ρl/s avec l = n₁, 2πa, s = πd²/4 et n₁ = 2π ϕ₀L₁ a

\[R = \frac{16\pi\rho\phi_0 L_1 a}{d^2} \] et \[L_1 = \frac{\mu_0 \pi ad(r_0 - a)}{8pr_0} \].

1 - 1 - f - A.N. L₁ = 0,11 mH. \[L_1 \omega_0 = \frac{5,9210^{-5} H}{\omega_1} \].

2 - Etude du bobinage secondaire
1 - 2 - a - \(\Phi_{1+2} = \sum \Phi_S \) soit, en négligeant les termes du second ordre, \(M = \frac{n_1 n_2 \mu_0 a^2}{2r_0} \).

1 - 2 - b - \(M = \sqrt{L_1 L_2} \).

3 - Etude de l'amplificateur
1 - 3 - a - la puisanance complexe est :
\[P = \frac{1}{2} |Z_e| l_{1\text{max}} |l_{e\text{max}}| = \frac{1}{2} |Z_e| |l_{e\text{max}}| \] avec \(P = \text{Re} \Phi \).

\[Z_e = R_1 \sqrt{L_1/C_1} \] soit \(P = \frac{jRL_1 \omega_0 l_{e\text{max}}^2}{R_1 L_1 C_1 \omega^2} \).

\[P = \frac{R_1 l_{e\text{max}}^2}{1 + \frac{R_1^2}{L_2^2 \omega_0^2}} \] avec \(P_{\text{max}} = R_1 l_{e\text{max}}^2 \) et \(Q = \frac{R_1}{L_1 \omega_0} \).

1 - 3 - b - \[P_{\text{max}} = \frac{P_{\text{max}}}{2} \] soit \(x - \frac{1}{x} = \pm \frac{1}{Q} \) (deux équations du second degré)

(1) \(x_{13} = \frac{1}{2} \pm \sqrt{\frac{1}{Q} - 4} \). Seule la racine positive est acceptable \((x_1)\).

(2) \(x_{24} = \frac{1}{2} \pm \sqrt{\frac{1}{Q} - 4} \). Seule la racine positive est acceptable \((x_2)\).

\[\Delta \omega_0 = \frac{\omega_0}{x_1} \] soit
\[\frac{\omega_0}{\Delta \omega_0} = Q \]
1 - 3 - c -
\[V_s = Z_e I_0 = Z_e s V_e \]
soit
\[G = \left| Z_e \right| s \]
finalement
\[G = \frac{R_1 s}{1 + Q^2 s - \frac{1}{x}} \]

\[V_{s,\text{max}} \] est donné pour
\[x = 1 \] \[V_{s,\text{max}} = R_1 I_0 \]

\[V_{s,\text{min}} \] est donné pour
\[\omega_1 \text{ ou } \omega_2 \] \[V_{s,\text{min}} = \frac{R_1 I_0}{\sqrt{2}} \]

1 - 3 - d -
\[V_e = A_0 + \sum_{n=1}^{N} C_n \cos \omega_n t + \psi_n \]

\[V_{n,s} = G(n \omega_0) \cdot V_{n,e} \] on peut donc définir
\[\tau_{n,e} = \frac{C_{n,e}}{C_{1,e}} \] et
\[\tau_{n,s} = \frac{G(n \omega_0) \cdot C_{n,e}}{G(\omega_0) \cdot C_{1,e}} \]

On obtient pour l'atténuation en décibels
\[\delta_n = \frac{\tau_{n,e}}{\tau_{n,s}} = \frac{G(n \omega_0)}{G(\omega_0)} = \frac{1 + Q^2 - x}{1 + Q^2 - \frac{1}{nx}} \]
comme \[x = 1 \] et \[n = 2 \],
\[\delta_2 = \frac{1}{1 + Q^2} \]

Tout calculs fait on trouve \[Q = 2 \].

1 - 3 - e - Posons
\[R_{eq} = R_1 / R_u \]
On exprime alors \[Q' \] par
\[Q' = \frac{R_{eq}}{L_1 \omega_0} \]
soit
\[Q' = \frac{Q R_u}{R_1 + R_u} \]
donc
\[\Delta \omega_0 = \Delta \omega_0 \frac{R_1 + R_u}{R_u} \]

Si \[R_u = R_1 \] alors \[\Delta \omega_0' = 2 \cdot \Delta \omega_0 \]

4 - Couplage magnétique de l'amplificateur à une charge

1 - 4 - a -
\[\begin{align*}
(1) \quad V_1 &= j L_1 \omega l_1 + j M \omega l_1 \\
(2) \quad V_2 &= j M \omega l_1 + j L_2 \omega l_2 + j L_2 \omega l_2 + j M \omega l_1 + j M \omega l_1 \\
(3) \quad V_2 &= -R_u l_2
\end{align*} \]

De (2) et (3) on tire (4)
\[l_2 = \frac{j L_1 \omega + j M \omega}{L_2 + j L_2 \omega} \]

En substituant (4) dans (2) et remarquant que
\[\frac{L_1}{L_2} = \frac{n_1^2}{n_2} \]
et que
\[\frac{2 M}{L_2} = \frac{2 n_1 n_2}{n_2} \]

on trouve
\[V_1 = Z_e = \mu \frac{j L_2 \omega R_u}{R_u + j L_2 \omega} \]

avec \[\mu = \frac{n_1 + n_2}{n_2} \]

1 - 4 - b - Calculons la pulsation de résonance du montage. Comme on nous demande dans la question - c - le facteur de qualité \[Q \], exprimons la puissance
moyenne absorbée par l'impédance constituée R_1, C_2, les bobines couplées et f.
En premier lieu, exprimons l'impédance équivalente $Z_{eq} = \frac{R_1}{C_2 / Z_2}$ soit

$$Z_{eq} = \frac{jR_1R_u\mu^2L_2\omega}{R_1R_u(1 - L_2C_2\mu^2\omega^2) + jL_2\omega(R_1 + \mu^2R_u)}$$

Comme $P = \text{Re} \left(\frac{R_u}{\omega^2} \right)$ on trouve alors tout calcul fait

$$P = \frac{R_u\mu^2}{1 + \frac{jR_u}{R_1 + \mu^2R_u}} \frac{1}{\omega^2}$$

et $Q = \frac{R_u\mu^2}{1 + \frac{jR_u}{R_1 + \mu^2R_u}} \frac{1}{\omega^2}$.

On veut $\frac{1}{L_2C_2\mu^2} = \frac{1}{L_1C_1}$ soit

$$C_2 = \frac{n_i^2}{(n_i + n_2)^2} C_1$$

1 - 4 - c - En définissant $\Delta Q = Q - Q'$ avec $Q = \frac{R_1}{\mu^2L_2\omega}$ et

$$Q' = \frac{R_uR_1}{(R_1 + \mu^2R_u)C_2\omega}$$
on obtient $\frac{\Delta Q}{Q} = \frac{1}{1 + \mu^2}$. A.N. $\mu = 9,9$.